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lattice involves the 
value sufficient for 

oincaré map.
2.0  Overview

2.1  Lattice Design for Synchrotron Light Sources

Challenge (D. H. Bilderbak, P. Elleaume, and Edgar Weck

“One of the most important design challenges of such a 
enlargement of the dynamic aperture in order to reach a 
injection.”

Given a Hamiltonian system

Approach: Analyze the properties of the corresponding P

H H0 εV+=
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tween symplectic 
ork has not been previ-
sults obtained will be 
chanics, the use of the 
ior of magnetic field 

, and G. Turchetti, 

dron accelerator using 
t-Snyder’s theory and 
tic map is just the natu-

∂f
∂xi
-------- ∂g

∂pxi
----------- ∂g

∂xi
-------- ∂f

∂pxi
-----------–
Lie series approach (Dragt and Finn, 1976):

“It also provides a new approach since the connection be
maps, Lie algebras, invariant functions, and Birkhoff’s w
ously recognized and exploited. It is expected that the re
applicable to the normal form problem in Hamiltonian me
Poincaré section map in stability analysis, and the behav
lines in a toroidal plasma device.”

Hamiltonian approach (A. Bazzani, P. Mazzanti, G. Servizi
1988):

“We describe the motion of a particle in the lattice of a ha
the formalism of symplectic maps. We revisit the Couran
we stress that the reduction to normal form of a symplec
ral generalization of the linear theory.”

M0 1→ e
:h1:

e
:h2:

e
:h3:

e
:h4:

…,= :f:g f g,[ ]

i 1=

2n

∑≡ ≡
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(Forest, 1990):

y the “small denomina-

ly, a system with peri-
 small ε.

 perturbation is less 
ate units. The latter is 
in by the motion of a 

iAixi
2〉φ, etc.
A recursive (arbitrary order) map normal form algorithm 

Problem (Poincaré, 1892): perturbation theory is limited b
tor problem” from celestial mechanics.

Theorem: Kolmogorov-Arnold-Moser (1954-1963). Rough
odic solution has quasi-periodic solutions for sufficiently

Problem (Percival, 1986):

“In fact, Hénon showed Arnold’s proof only applies if the
than 10-333 and Moser’s if it is less than 10-48, in appropri
less than the gravitation perturbation of a football in Spa
bacterium in Australia!”

M A 1– e
: g J φ, 

 – :
e

:k J 
  :

R e
:g J φ, 
  :

A,≅

νx y,
1

2π
------

∂k J 
 

∂Jx y,
--------------- ,–= βxi ∆βxi+ e

: g J φ, 
 – :

Rn →〈=
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cales exponentially as 

ekhoroshev Theorem 
dly small to guarantee 
ults from pessimistic 

in, SSC 1990):

e, and we still lack a 

rator and evaluate by 

n 1– :
Mn 1– n→

linear

4 h5 …+ :+
RA
Theorem: Nekhoroshev. Roughly, the confinement time s
ε tends to zero.

Problem (Warnock and Ruth, 1991). “Unfortunately, the N
has no direct practical application, since ε must be absur
a stability time T of suitable magnitude. This situation res
estimates that are required in the rigorous analysis.”

Approach: analyze the Lie generator (Bengtsson and Irw

Problem: Taylor series have a finite radius of convergenc
theorem for stability in the general non-linear case.

Intuitive approach: reduce the magnitude of the Lie gene
numerical simulations of the system of ODEs (tracking).

M M1 2→
lineare

:g3 2, :
M2 3→

lineare
:g3 3, :

…Mn 2– n 1–→
linear e

:g3,=

e
:ĝ3 2, :

e
:ĝ3 4, :

…e
:ĝ3 n, 1– :

M1 n→
linear= A 1– e

:h3 h+
=
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des the effects of engi-

ork in an effective man-

orithms for symplectic 
ormal Form with mod-
amline class: Thor). In 
ust be guided by the 
Challenge: how to build a self-consistent model that inclu
neering tolerances and radiation?

Solution exists: Forest, Hirata, Chao, et al.

Problem: how to (correctly) implement the entire framew
ner.

Approach (Bengtsson and Forest, 1996): integrate the alg
integrator-, Truncated Power Series Algebra-, and Map N
ern computer programming techniques (a polymorphic be
particular, a successful object-oriented implementation m
mathematical structures, not vice-verse.
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ntly the Normal Form 
r motion of single parti-
seful in the design 
ines these sophisti-
 is due to the complex-
odel of the accelerator 
erimentally [4] may 

has been made by 
ation theory he has 
l turn-by-turn data can 
f a complete solution. 
surement technique 
erformed in the field of 
2.2  Accelerator Control (Single Particle Dynamics)

Challenge (R. Bartolini and F. Schmidt, 1998):

“Since many years perturbation theory [1] and more rece
[2, 3] techniques have been used to understand nonlinea
cles in hadron accelerators. This has proven to be very u
phase of an accelerator. When it comes to existing mach
cated tools have been rarely in use up to now. In part this
ity of the theory but also due to the fact that a nonlinear m
cannot be easily anticipated. Checking such a model exp
prove even more difficult.

One well documented attempt to overcome this problem 
Bengtsson [5]. In the framework of the first order perturb
studied how the real spectra from tracking or experimenta
be related to resonances. This study has stopped short o
An important prerequisite to his analysis was a tune mea
superior to the standard FFT [6]. Similar attempts were p
celestial mechanics [7].”
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lski, and Laskar, 2000).
Complimentary approaches:

• Frequency Map Analysis (D. Robin, C. Steier, L. Nado
• Linear Optics from Closed Orbits (J. Safranek, 1996).
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 improve the perfor-

s (Nyquist, 1932, 

ehavior).
3.0  Control Theory 
Challenge: Given a model for a dynamical system, how to
mance?

3.1  Classical Control Theory

A linear, time-invariant, single-input/single-output system
Bode, 1940)

FIGURE 1. Transfer Function (transient b

u(t)
y(t)

K

+

-

h(t)ΣR
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 outputs (R. Kalman, 

 feedback).

y(t)
3.2  Modern Control Theory

A linear, time-varying system with multiple input/multiple
1960)

FIGURE 2. State-Space Approach (full-state

This concept is the theme for the remaining slides.

u(t) x
·

t( ) A t( )x t( ) B t( )u t( ),+=

y t( ) C t( )u t( )=

K
x(t)

+

-

R Σ
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alues of A

 a single output signal 

W) n=



 uk 1–

uk
Similarly, the corresponding discrete-time system is

The dynamics of the system is determined by the eigenv

Moreover, the system is controllable and observable if

For the latter, all the internal states can be estimated from

xk 1+ Axk Buk,+=

yk Cuk=

AN TΓNT 1–=

Wc B AB ,= Wo
C

CA
,= rank(

xk AWo
1– yk 1–

yk
BA 1– B[ ] AWo

1– 0 0
CB 0

–




+=
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s.

 independent of the ini-
r systems. -> Numeri-
Summary:

The intrinsic properties of linear systems:

• stability,

• controllability,

• and observability

are determined by purely algebraic properties, i.e.:

• the eigenvalues of the state matrix,

• and certain rank conditions of the state-space matrice

i.e. a coordinate-free description. In particular, stability is
tial conditions. This is typically not the case for non-linea
cal simulations (tracking).
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)

t, symplectic group.)

t δ, ]T
3.3  Particle Accelerator (Linear) Control Theory

Hill’s equation

can be written

with the discrete-time version (Courant and Snyder, 1958

The state (transport) matrix

is concatenated by matrix multiplication (Lorentz invarian

x″ K s( )x+ 0=

px' K s( )x– ,= x' px=

xk 1+ Mxk,= xk xk pxk,[ ]T≡

x1 M0 1→ x0,= x x px y py c0, , , ,[=

M0 2→ M1 2→ M0 1→=
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rollable and observ-

.

erent bunch instabili-
Generalizing, the driven pseudo-harmonic oscillator

leads to

It is straightforward to show that the system is both cont
able. Correspondingly, one can:

• Monitor the (linear) phase-space motion with one BPM

• Design and implement feed-back systems for e.g. coh
ties.

x″ K s( )x+ u s( )=

xk 1+ Mxk Buk,+=

yk Cuk=
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s
al- and numerical stud-

neering tolerances and 

 Ruth, Yoshida, 1990)


 2

py
q
p0
------Ay s( )– 

  2
–

e
: c1LHd:–

O L5( ),+

d2
21 3⁄

2 21 3⁄–
--------------------–=
4.0  A “Wind Tunnel” for the System of ODE
Challenge: How to implement one model for both analytic
ies, with a self-consistent treatment of the impact of engi
radiation?

4.1  Equations of Motion

Note, expansions in “time”, i.e. the s-coordinate.

Hamiltonian (phase-space: )

A 4th-order symplectic integrator is given by (Forest and

x x px y py δ c0∆t, , , , ,[ ]=

H 1 href s( )x+( ) q
p0
------As s( ) 1 δ+( )2 px

q
p0
------Ax s( )–

–+–=

S4 L( ) e
: c1LHd:–

e
: d1LHk:–

e
: c2LHd:–

e
: d2LHk:–

e
: c2LHd:–

e
: d1LHk:–

≡

c1
1

2 2 21 3⁄–( )
-----------------------------,= c2

1 21 3⁄–

2 2 21 3⁄–( )
-----------------------------,= d1

1

2 21 3⁄–
--------------------,=
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nd after each element.

 field .

to arbitrary order?

 phase space vector 

r one-turn map and the 

igenvectors.

Vk  ∇⋅
Problem: how to model mechanical mis-alignments?

Solution: introduce an Euclidian transformation before- a

Problem: how to introduce classical radiation?

Solution: generalize from Poisson bracket  to vector

Problem: How to extract the corresponding Taylor maps 

Solution: Replace the numerical operations (+,-,*,/) on the
with TPSA.

Problem: How to obtain the equilibrium emittance?

Solution: Compute the (complex) eigenvalues of the linea

diffusion coefficients related to  for the e

:Hk:

x2〈 〉 y2〈 〉 z2〈 〉, ,[ ]
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i2 … in+ + +

1
i1x2

i2…xn
in

R⋅ Q+ R⋅ O xN 1+( ),+

1)

1)
4.2  Truncated Power Series Algebra (TPSA)

Truncated power series

form an (associative) algebra over the real numbers

Moreover (inverse)

P a
I
xI,

I 0=

N

∑= I i1 i2 … in, , ,( ),≡ I i1≡

x x1 x2 … xn, , ,( ),≡ xI x≡

P Q⋅( ) R⋅ P Q R⋅( )⋅ O xN 1+( ),+= P Q+( ) R⋅ P=

P Q R+( )⋅ P Q⋅ P+ R⋅ O xN 1+( ),+=

a P Q⋅( )⋅ a P⋅( ) Q⋅ O xN 1+( )+ P a Q⋅( )⋅ O xN +(+= =

1
I P+------------ I P– P2 … PN± O xN +(+ + +=
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rift (C++).

.0*(1.0+x[delta_]));
elta_]) - L;
FIGURE 4. Polymorphic Propagator for a D

/* drift */
template<typename T>
void drift_pass(const T L, ss_vect<T> &x)
{
  T  ps, u;
  if (!nl_drift_on) {
    u = L/(1.0+x[delta_]);
    x[ct_] += u*(pow(x[px_], 2)+pow(x[py_], 2))/(2
  } else {
    ps = get_ps(x); u = L/ps; x[ct_] += u*(1.0+x[d
  }
  x[x_] += x[px_]*u; x[y_] += x[py_]*u;
  if (totpath_on) x[ct_] += L;
}
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ithms for:

ric tool to compute:

es and radiation;

quations of motion 
tegration.

entally no different 
roperties and invari-
 celestial mechanics.

inear case, what to do?
To summarize, an integrated implementation of the algor

• symplectic integrator,
• TPSA,

• and the Map Normal Form

by polymorphism (operator overloading) provides a gene
• any global property,

• to arbitrary order,

• with self-consistent modeling of engineering toleranc

• and parameter dependence.

In particular, all quantities are computed from the same e
(Hamiltonian, vector flow) and algorithm for numerical in

Problem: since the Map Normal Form approach is fundam
from classical perturbation theory, the computed global p
ants are limited by the “small denominator problem” from

Challenge: Lacking a control theory for the general non-l
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pproach

maintaining adequate 

n 1– :
Mn 1– n→

linear

4 h5 …+ :+
RA
5.0  Dynamic Aperture: a Control Theory A
Note, expansions in the multipole strengths.

Challenge: How to control the (linear) chromaticity while 
dynamic aperture?

5.1  Lie Generator Approach

The one-turn map

leads to the stability problem

The map can be written

xn 1+ Mxn=

xN MNx0=

M M1 2→
lineare

:g3 2, :
M2 3→

lineare
:g3 3, :

…Mn 2– n 1–→
linear e

:g3,=

e
:ĝ3 2, :

e
:ĝ3 4, :

…e
:ĝ3 n, 1– :

M1 n→
linear= A 1– e

:h3 h+
=
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).

beginning of the lattice.

 the CBH formula.

:

by introducing similarity transformations

and the CBH formula

In other words:

1. Transform to Floquet space (normalized phase space

2. Parallel transport all the (thin) nonlinear kicks to the 

3. Combine them into a single (thin) nonlinear kick with

Mlineare:g:Mlinear
1– e

:Mlinearg:
e:ĝ= =

e:f:e:g: e:f g f g,[ ] 2⁄ O 3( ):+ + +=
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ctored into two parts:

ximation.

 becomes tightly cou-
The stability problem then takes the form

To summarize, the dynamic aperture problem has been fa

•  A non-linear Lie generator (thin kick) h,

• and a phase-space rotation R (working point).

Intuitive approach:

• Minimize h to bring the map closer to the linear appro

• Determine the dynamic aperture from tracking.

• Optimize the tune.

• Iterate => robust dynamic aperture and optics design
pled for high performance lattices.

• Include engineering tolerances and radiation.

• Refine.

MN A 1– e
:h3 h4 …:+ +

R( )
N
A=
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)

ipx+−

k)µxi l m–( )µyi+ ]
,

hi})
The vector potential for a (thin) sextupole at location  is

Introducing the resonance basis

and the mode expansion

where (can be represented as phasor sums:

si

q
p0
------As si( )

b3i
3-------- x3 3xy2–( ).–=

hx
 ± 2Jxe

φx±
2Jx φx( ) 2Jx φx( )sin±cos x= = =

h3 h
I
hx

 i1+ 
hx

 i2– hy
 i3+ 

hx
 i4– δ

i5,

I n=

∑≡

hjklmp hjklmp
* 1

A---- b3nL( )βxn
j k+( ) 2⁄ βyn

l m+( ) 2⁄ ηx
pe

i j –([

n 1=

N

∑= =

Re hi{ } Im{,(
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nerators
01, h00111

h30000, h10020, h10200

01, h00201
h10002

tors.
First order generators:

Phenomena Ge
Linear Chromaticity h110

Sextupolar (geometric) Modes h10110, h21000, 
Chromatic (synchro-betatron) Modes h200

Second Order Dispersion

Table 1: First Order Sextupolar Genera
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i4 j4+( )
δ

i5 j5+( )
,

20) 2Jx( ) 2Jy( )

20) 2Jy( )2
Turning the crank to second order

where (phase independent)

h4
1

Jx
αJy

β
------------- h

I
h

J
h

x
 i1 j1+( )+ 

hx
 i2 j2+( )–

hy
 i3 j3+( )+ 

hx
 –

I J n= =

∑=

α β+ 2=

h
I
h

J
( )

Ker
1
64------ 3h21000h12000 h30000h03000+( ) 2Jx( )2–=

1
16
------ 2h21000h01110 h10020h01200 h10200h010+ +(+ 

1
64
------ 4h10110h01110 h10020h01200 h10200h010+ +(–
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f the first order, they 
der.

ne shifts. However, 

 to normal form.

2νx

10110h01200)2νy

2νy

2νy
] 2Jx( ) 2Jy( )

00)4νy
] 2Jy( )2 c.c.+
and (drive sextupolar modes)

Notes:

1. Since the second order generators are cross terms o
can be controlled by local cancellation of the first or

2. It is clear that  drive amplitude dependent tu

 contribute too, i.e. when the map is brought

h
I
h

J
( )

Im
1
64------ 2 h30000h12000( )2νx

h30000h21000( )4νx
+[ ] 2Jx( )2–=

1
64------ 2 h30000h01110 h21000h10110 2h10200h10020+ +( )[+ 

2 h10200h12000 h21000h01200 2h10200h01110 2h+ + +(+ 

h21000h10020 h30000h01020 4h10110h10020+ +( )2νx –
+ 

h30000h01200 h10200h21000 4h10110h10200+ +( )2νx ++ 

1
64
------ 2 h10200h01110 h10110h01200+( )2νy

h10200h012(+[+ 

h
I
h

J
( )

Ker

h
I
h

J
( )

Im
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ent tune shifts (12), 

)
) (1, 4) (3, -2) (3, 2)

.νx nyνy, )
Generalizing to 3rd order:

• 2nd order brings 8 more geometric modes.
• 3rd order adds another 14 geometric modes.

• And, chromatic (synchro-betatron) modes as well.

• 2nd-, 4th- and 6th order introduces amplitude depend
higher order chromaticity (4), and cross terms (7).

1st Order (5) (1, 0) (3, 0) (1, -2) (1, 2)
2nd Order (8) (2, 0) (0, 2) (4, 0) (0, 4) (2, -2) (2, 2
3rd Order (14) (1, 0) (3, 0) (1, -2) (1, 2) (5, 0) (1, -4

Table 2: Sextupolar Geometric Modes: nx(
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h00330

, h00440

Dependent Tune Shifts.

11003 , h00113

 h00331

near Chromaticity.

Jy
2

Jy
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JxJy
3 Jy

3

Jxδ
3 Jyδ

3

Jy
2δ

Jy
3δ
:

Order Geometric Generators

2 h22000 , h11110 , h00220

4 h33000 , h22110 , h11220 , 

6 h44000 , h33110 , h22220 , h11330

Table 3: Sextupolar Geometric Generators of Amplitude 

Order Chromatic Generators

1 h11001 , h00111 , h11002 , h00112 , h

2 h22001 , h11111 , h00221

4 h22111 , h22111 , h11221 ,

Table 4: Sextupolar Chromatic Generators of Nonli

h
I
h

J
( )

Ker

Jx
2 JxJy

Jx
3 Jx

2Jy JxJy
2

Jx
4 Jx

3Jy Jx
2Jy

2

Jxδ Jyδ Jxδ
2 Jyδ

2

Jx
2δ JxJyδ

Jx
3δ Jx

2Jyδ JxJy
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e coordinates); with 

er, i.e. 3rd order in the 

has now been reduced 
tions for the sextupole 

eights by testing the 

just the cell tune, 
e  system), and 

s Light Source concep-
th computer algebra), 
 analytical formula.

52 9×
5.2  Application to NSLS-II

Approach:

1. Extract the one-turn map (to 8th order in phase-spac
parameter dependence.

2. Compute the corresponding Lie generator (to 9th ord
sextupole strengths); with parameter dependence.

3. The non-linear part of the dynamic aperture problem 
to a  system of linear, quadratic, and cubic equa
strengths.

4. Determine a merit function with suitable (heuristic) w
effect on the dynamic aperture from tracking.

5. Optimize the tune: select a grid of working points, ad
determine the sextupole strengths (by minimizing th
evaluate the dynamic aperture from tracking.

This is essentially the strategy we developed for the Swis
tual design, and pursued analytically to second order (wi
by instrumenting the optics code with the corresponding

52 9×
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FIGURE 5. Reality Check (courtesy of the Swiss

Active logbook
Machine Shift Summaries

Entry date  Priority  Author
22/02/2005 07:00 N  Andreas Luedeke

Title
22.Feb Früh, Lifetime studies and F4TJB test
 

Keywords
Machine Shift
 

Logbook entry

Machine development 

(Andersson, Pedrozzi, Streun) 
 
Summary (detailed evaluation will follow): 

l Test of a new sextupole setting (optics F4TJB calculated by J.Bengtsson, BNL): bet
injection efficiency (100% without any optimization!) (due to larger horizontal DA) bu
lifetime (due to larger 2nd order chromaticity). Tests for various tunes and chroma -
promising optics. 

l Chromaticity measurement from tune vs. RF-freq: 2.2/4.1 (set:4/3). 
l Energy acceptance: Variation of RF voltage and measurement of Lifetime vs. Synch

tune. Difficult due to instabilities for low voltage. 
l Measurement of dispersion at pinhole by variation of RF frequency and measureme

position. 
l Measurements with pinhole and playing with skew quads: all zero gives 47 micron r

height, visible rotation of beam and 2.8 hrs lifetime. optimum skew quad setting to s
rotation (at pinhole location only) gives 42 micron and 3.4 hrs lifetime (for 85mA in 9
F4TJB). Application crashes due to time outs. 

l Analysis of lifetime: Measurement while moving slowly in horizontal scraper. 
l Copying all DBPM software from /work to /prod through the "u.py" backdoor. Reboo

DBPM crates from /prod.  

Returned to F4T nominal optics afterwards, no time to establish F4TJB thoroughly. 
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TBA-24 Cell.
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FIGURE 6. Tune Scan for NSLS-II Prototype 

Normalized Dynamic Aperture: TBA-24
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type TBA-24_6m Cell.
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8 20
6.0  Closing the Loop: Accelerator Control

6.1  Frequency Map Analysis

FIGURE 7. Frequency Map Analysis for NSLS-II Proto
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totype DBA-32 Cell.
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FIGURE 8. Frequency Map Analysis for NSLS-II Pro
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he beam with a fast 
 motion with a BPM on 

 can be estimated 
nitored on a turn-by-
x x′, )

R e
:g J φ, 
  :

A

6.2  Frequency Analysis of Turn-by-Turn BPM Data

The nonlinear dynamics can be observed by displacing t
kicker (or at injection) and sampling the center-of-charge
a turn-by-turn basis. Moreover, with two adjacent BPMs, 
and the variation of the linear invariant computed and mo
turn basis.

The N-turn map

(

MN A 1– e
:h J φ, 
  :

R
 
 
 
 

N

A=  A 1– e
: g J φ, 

 – :
e

:Nk J 
  :

≅
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 by symmetry (second 
e the cell phase 

g the cross terms

g tolerances perturb 
nances, the following 

O b3
2( ),

νx) l m–( ) φy N2πνy+( )+ ],
leads to

where

The Swiss Light Source design is based on:

• direct control of the systematic first order generators
order achromat) and 9 sextupole families to de-coupl
advance, i.e. to free working point,

• and indirect control of the second order by minimizin

for a robust dynamic aperture. However, since engineerin
the symmetry of the optics, i.e. excite non-structural reso
strategy was outlined as part of the conceptual design.

Jx N( ) Jx g2100 g1011 g3000 g1002 g1020+ + + + ++=

Jy N( ) Jy g1002– 2g1020 O b3
2( )+ +=

gjklm N( )
Ajklm 2Jx( ) j k+( ) 2⁄ 2Jy( ) l m+( ) 2⁄

π j k–( )νx l m–( )νy+[ ]( )sin
--------------------------------------------------------------------------------------- φ̂jklm j k–( ) φx N2π+(+[cos=

φ̂ijkl0 φijkl π i j–( )νx k l–( )νy+[ ]–=
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φy [deg]

-

tupolar Modes.

90.0–

45.0
Three first order modes were deliberately excited:

f Ax φx [deg] Ay

-

Table 5: Deliberate Excitation of First Order Sex

3νx 5.0 9–×10 45.0–

νx 2νy– 3.0 9–×10 90.0 5.0 9–×10
νx 2νy+ 1.0 9–×10 45.0 2.0 9–×10
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S Note 9/97).
and simulated by tracking:

FIGURE 9. Variation of the Linear Invariant (SL
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e linear invariant gave:

ured, and hence com-
ite sign. In particular, if 

φy [deg]

-

 from Tracking
 to aliasing).

94.6

49.0
FFT (with interpolation, courtesy of E. Asseo, LEAR) of th

Conclusion:

The sextupolar modes for a real accelerator can be meas
pensated, i.e. by introducing a correction with the oppos
the sextupoles have individual power supplies.

f Ax φx [deg] Ay

-

Table 6: Estimated First Order Sextupolar Modes
(  appears with the opposite sign due

3νx 5.3 9–×10 45.1–

νx 2νy– 2.9 9–×10 82.6– 5.8 9–×10
νx 2νy+ 1.0 9–×10 49.6 1.9 9–×10

νx 2νy–
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rtmann’s “Middle 
 and beam life time):

S X-Ray Ring.

3
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6.3  Beam Response Matrix Measurements

Global matching of the normalized ring (courtesy of G. Po
Layer”): Control of Gradient Errors (horizontal emittance

FIGURE 10. Optics Symmetrization of the NSL
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 dispersion (vertical 

 (sextupoles zeroed).

41
4
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34
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HBPM# and VBPM

rix
Lattice calibration: control of linear coupling and vertical
emittance).

FIGURE 11. Lattice Calibration of the NSLS X-Ray Ring
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rectors (~500 parame-

 (sextupoles zeroed).

400 500

s

mber
Least-square fit of gain- and roll errors for BPMs and cor
ters).

FIGURE 12. Lattice Calibration of the NSLS X-Ray Ring

100 200 300

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Singular Value

Singular Value Nu
M

ag
ni

tu
de

χ2
total

 / D.O.F = 4.982313

20 40 60 80
−1.5

−1

−0.5

0

0.5

1

LOCO Parameter Fits

Parameter Number



51 of 51

 systems are of limited 
a source of inspiration.
stem, requires rigor-
by computer simula-
e system of ordinary 
omprehensive model 

iques provides an ana-
tate-space dynamics.

one to monitor the 
, and hence to improve 
ign and operations.
design is starting to 
7.0  Conclusions
• While mathematical theorems for stability of nonlinear

use for real systems, they are nevertheless useful as 
• Robust design, i.e. control of a complex dynamical sy

ous studies of its behavior under various conditions, 
tions and/or prototyping and testing. In the case of th
differential equations for single particle dynamics, a c
can be implemented.

• Application of Lie series- and map normal form techn
lytical framework to gain insight into the underlying s

• Application of signal-processing techniques enables 
state-space dynamics of a real system or simulations
its performance by model driven control; for both des

• Application of these techniques to the NSLS-II lattice 
bear fruit.
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